Abstract

Reversal learning paradigms are widely used assays of behavioral flexibility with their probabilistic versions being more amenable to studying integration of reward outcomes over time. Prior research suggests differences between initial and reversal learning, including higher learning rates, a greater need for inhibitory control, and more perseveration after reversals. However, it is not well-understood what aspects of stimulus-based reversal learning are unique to reversals, and whether and how observed differences depend on reward probability. Here, we used a visual probabilistic discrimination and reversal learning paradigm where male and female rats selected between a pair of stimuli associated with different reward probabilities. We compared accuracy, rewards collected, omissions, latencies, win-stay/lose-shift strategies, and indices of perseveration across two different reward probability schedules. We found that discrimination and reversal learning are behaviorally more unique than similar: Fit of choice behavior using reinforcement learning models revealed a lower sensitivity to the difference in subjective reward values (greater exploration) and higher learning rates for the reversal phase. We also found latencies to choose the better option were greater in females than males, but only for the reversal phase. Further, animals employed more win-stay strategies during early discrimination and increased perseveration during early reversal learning. Interestingly, a consistent reward probability group difference emerged with a richer environment associated with longer reward collection latencies than a leaner environment. Future studies should systematically compare the neural correlates of fine-grained behavioral measures to reveal possible dissociations in how the circuitry is recruited in each phase. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.