Abstract

The assembly of hepatitis C virus (HCV) is poorly understood, largely due to the lack of mammalian cell culture systems that are easily manipulated and produce high titers of virus. This problem is highlighted by the inability of the recently established HCV replicon systems to support HCV capsid assembly despite high levels of structural protein synthesis. Here we demonstrate that up to 80% of HCV core protein synthesized de novo in cell-free systems containing rabbit reticulocyte lysate or wheat germ extracts assembles into HCV capsids. This contrasts with standard primate cell culture systems, in which almost no core assembles into capsids. Cell-free HCV capsids, which have a sedimentation value of approximately 100S, have a buoyant density (1.28 g/ml) on cesium chloride similar to that of HCV capsids from other systems. Capsids produced in cell-free systems are also indistinguishable from capsids isolated from HCV-infected patient serum when analyzed by transmission electron microscopy. Using these cell-free systems, we show that HCV capsid assembly is independent of signal sequence cleavage, is dependent on the N terminus but not the C terminus of HCV core, proceeds at very low nascent chain concentrations, is independent of intact membrane surfaces, and is partially inhibited by cultured liver cell lysates. By allowing reproducible and quantitative assessment of viral and cellular requirements for capsid formation, these cell-free systems make a mechanistic dissection of HCV capsid assembly possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.