Abstract

In this paper we establish a unique factorization theorem for pure quantum states expressed in computational basis. We show that there always exists unique factorization for any given N-qubit pure quantum state in terms of the tensor product of non-factorable or ``prime'' pure quantum states. This result is based on a simple criterion: Given N-qubit pure quantum state in computational basis can be factorized as the tensor product of an m-qubit pure quantum state and an n-qubit pure quantum state, where (m + n) = N, if and only if the rank of the certain associated matrix is equal to one. This simple criterion leads to a factorization algorithm which when applied to an N-qubit pure quantum state factorizes that state into the tensor product of non-factorable or ``prime'' pure quantum states. This paper shows that for any given N-qubit pure quantum state the said factorization always ``exists'' and is ``unique''. We demonstrated our work here on a computational basis. PACS Number: 03.67.Mn, 03.65.Ca, 03.65.Ud

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.