Abstract
The clams Pseudocardium, Solen, Corbicula and Ensis possess a unique form of arginine kinase (AK) with a molecular mass of 80 kDa and an unusual two-domain structure, a result of gene duplication and subsequent fusion. These AKs also lack two functionally important amino acid residues, Asp(62) and Arg(193), which are strictly conserved in other 40-kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. However, these AKs show higher enzyme activity. The cDNA-derived amino acid sequences of 40-kDa AKs from the blood clam Scapharca broughtonii and the oyster Crassostrea gigas were determined. While Asp(62) and Arg(193) are conserved in Scapharca AK, these two key residues are replaced by Asn and Lys, respectively, in Crassostrea AK. The native enzyme from Crassostrea and both of the recombinant enzymes show an enzyme activity similar to that of two-domain clam AKs and at least twofold higher than that of other molluskan AKs. Although the replacement of Asp(62) or Arg(193) by Gly in normal AK causes a considerable decrease in V(max) (6-15% of wild-type enzyme) and a two- to threefold increase in K(m) for arginine, the same replacement in Scapharca AK had no pronounced effect on enzyme activity. Together with the observation that bivalve AKs are phylogenetically distinct from other molluskan AKs, these results suggest that bivalve AKs have undergone a unique molecular evolution; the characteristic stabilizing function of residues 62 and 193 has been lost and, consequently, the enzyme shows higher activity than normal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.