Abstract

Vanadia/ceria supported catalysts exhibit ultrahigh catalytic activities in oxidative dehydrogenation (ODH) reactions. Here, we performed systematic density functional theory calculations to illustrate the underlying mechanisms. It is found that unique electronic and structural effects are both crucial in the catalytic processes. Calculations of the catalytic performance of different oxygen species in oxidation of methanol to formaldehyde suggested that the oxygen of the interface V-O-Ce group is catalytically more active, especially when H adsorption energy is small, indicating the strong structural effect in the vanadia/ceria supported catalyst. In addition, new empty localized states of O 2p generated in a ceria-supported system through depositing VO3- and VO4-type monomeric vanadia species are determined to participate in the whole ODH reaction processes and help to reduce the barriers at various steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call