Abstract

Single-molecule measurements of biomaterials bring novel insights into cellular events. For almost all of these events, post-translational modifications (PTMs), which alter the properties of proteins through their chemical modifications, constitute essential regulatory mechanisms. However, suitable single-molecule methodology to study PTMs is very limited. Here we show single-molecule detection of peptide phosphorylation, an archetypal PTM, based on electrical measurements. We found that the phosphate group stably bridges a nanogap between metal electrodes and exhibited high electrical conductance, which enables specific single-molecule detection of peptide phosphorylation. The present methodology paves the way to single-molecule studies of PTMs, such as single-molecule kinetics for enzymatic modification of proteins as shown here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call