Abstract

Low selectivity and poor activity of photocatalytic CO2 reduction process are usually limiting factors for its applicability. Herein, a hierarchical electron harvesting system is designed on CoNiP hollow nano-millefeuille (CoNiP NH), which enables the charge enrichment on CoNi dual active sites and selective conversion of CO2 to CH4 . The CoNiP serves as an electron harvester and photonic "black hole" accelerating the kinetics for CO2 -catalyzed reactions. Moreover, the dual sites form from highly stable CoONiC intermediates, which thermodynamically not only lower the reaction energy barrier but also transform the reaction pathways, thus enabling the highly selective generation of CH4 from CO2 . As an outcome, the CoNiP NH/black phosphorus with dual sites leads to a tremendously improved photocatalytic CH4 generation with a selectivity of 86.6% and an impressive activity of 38.7µmolg-1 h-1 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.