Abstract

We investigate the degradation phenomena of organic solar cells based on nonfullerene electron acceptors (NFA) using intensity-modulated photocurrent spectroscopy (IMPS). Devices composed of NIR absorbing blends of a polymer (PTB7) and NFA molecules (COi8DFIC) were operated in air for varying periods of time that display unusual degradation trends. Light aging (e.g., ∼3 days) results in a characteristic first quadrant (positive phase shifts) degradation feature in IMPS Nyquist (Bode) plots that grow in amplitude and frequency with increasing excitation intensity and then subsequently turns over and vanishes. By contrast, devices aged and operated in air for longer times (>5 days) display poor photovoltaic performance and have a dominant first quadrant IMPS component that grows nonlinearly with excitation intensity. We analyze these degradation trends using a simple model with descriptors underlying the first quadrant feature (i.e., trap lifetime and occupancy). The results indicate that the quasi first-order recombination rate constant, krec, is significantly slower in addition to lower trap densities in devices exhibiting light aging effects that are overcome by increasing carrier densities (viz. excitation intensity). By contrast, larger trap densities and distributions coupled with larger krec values are found to be responsible for the continuous growth of the first quadrant with light intensity. We believe that defect formation and charge recombination at device contact interfaces is chiefly responsible for performance degradation, which offers several directions for materials and device optimization strategies to minimize long-term detrimental factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.