Abstract

We attack the problem of deciding whether a finite collection of finite languages is a code, that is, possesses the unique decipherability property in the monoid of finite languages. We investigate a few subcases where the theory of rational relations can be employed to solve the problem. The case of unary languages is one of them and as a consequence, we show how to decide for two given finite subsets of nonnegative integers, whether they are the nth root of a common set, for some n≥1. We also show that it is decidable whether a finite collection of finite languages is a Parikh code, in the sense that whenever two products of these sets are commutatively equivalent, so are the sequences defining these products. Finally, we consider a nonunary special case where all finite sets consist of words containing exactly one occurrence of the specific letter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.