Abstract

Core–shell structured SiO2 nanoparticles with controlled morphology were synthesized and used as functional fillers in Li+-conducting composite polymer electrolytes for lithium-ion polymer batteries. The composite polymer electrolytes prepared with poly(vinylidene fluoride-co-hexafluoropropylene) and core–shell SiO2(Li+) nanoparticles exhibited high ionic conductivity, good mechanical strength and favorable interfacial characteristics. Tests run on carbon/LiNi1/3Co1/3Mn1/3O2 cells with composite polymer electrolyte containing optimized SiO2(Li+) nanoparticles yielded excellent results in terms of capacity retention (95% after 100 cycles) and rate capability (167 mA h g−1 at 5 C rate).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.