Abstract

Meeting abstracts Checkpoint blockade is increasingly becoming a valuable immunotherapeutic tool in the management of advanced malignancies. Monoclonal antibodies (mAb) that target CTLA-4 have significantly extended survival of patients with metastatic melanoma, however the number of responders

Highlights

  • Checkpoint blockade is increasingly becoming a valuable immunotherapeutic tool in the management of advanced malignancies

  • We have previously shown in the 4T1 mouse tumor model that resistance to anti-CTLA-4 therapy can be overcome by concurrent local radiotherapy (RT) (Demaria et al 2005 Clin Can Res 11:728)

  • We used high throughput sequencing of T cell receptor (TCR) b chain to interrogate the breadth and depth of tumor infiltrating lymphocytes (TILs) repertoire changes in 4T1 tumors after treatment with anti-CTLA-4 therapy given in conjunction with radiotherapy

Read more

Summary

Background

Checkpoint blockade is increasingly becoming a valuable immunotherapeutic tool in the management of advanced malignancies. Monoclonal antibodies (mAb) that target CTLA-4 have significantly extended survival of patients with metastatic melanoma, the number of responders remain low. We have previously shown in the 4T1 mouse tumor model that resistance to anti-CTLA-4 therapy can be overcome by concurrent local radiotherapy (RT) (Demaria et al 2005 Clin Can Res 11:728). In part, the result of radiation’s ability to promote priming, and enhance homing of effector cytotoxic T cells to the tumor and their interactions with tumor cells (Matsumura et al 2008 J Immunol 181; Ruocco et al 2012 J Clin Invest 122:10). We used high throughput sequencing of T cell receptor (TCR) b chain to interrogate the breadth and depth of tumor infiltrating lymphocytes (TILs) repertoire changes in 4T1 tumors after treatment with anti-CTLA-4 therapy given in conjunction with radiotherapy

Methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.