Abstract

Calcium-dependent phosphatidylinositol-specific phospholipase C from Streptomyces antibioticus (saPLC1) catalyzes hydrolysis of phosphatidylinositol (PI) into inositol 1-phosphate by a unique mechanism involving formation of inositol 1,6-cyclic phosphate (1,6-IcP) as an intermediate. This work examines the rates and products of cleavage of phosphorothioate and phosphorodithioate analogues of PI in which sulfur was introduced into the phosphate moiety at a nonbridging position (pro-R or pro-S), a bridging position, or both. The replacement of the pro-S oxygen in the phosphoryl moiety of PI by sulfur results in a 3 x 10(7)-fold decrease of the catalytic rate constant, whereas alteration of the pro-R oxygen results in only a modest rate reduction. The addition of the second sulfur atom into the bridging position of the S(p) isomer of the phosphorothioate analogue causes a dramatic (2 x 10(5)-fold) increase of the rate of cleavage but has a negligible effect on the R(p) isomer. These differences are consistent with a change in the mechanism for the S(p) isomer of the phosphorodithioate analogue into a more dissociative type, where the leaving group carries a large amount of negative charge. In addition, hydrolysis of the diastereomers of the phosphorothioate analogues of 1,6-IcP, inositol cis-1,6-IcPs and inositol trans-1,6-IcPs, affords two distinct products, inositol 1-phosphorothioate and inositol 6-phosphorothioate, respectively. Formation of inositol 6-phosphorothioate is explained by the binding of trans-1,6-IcPs in the active site in a rotated orientation that interchanges the oxygen atoms at the 1- and 6-positions, thereby allowing the hydroxyl group at the 1-position to act as a leaving group. The reorientation of the intermediate is driven by formation of favorable interactions of the enzyme active site with the nonbridging oxygen in the trans intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call