Abstract
N-acetyl glucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme involved in the biosynthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a critical precursor for the synthesis of peptidoglycan and other cell wall components. The absence of a homolog in eukaryotes makes GlmU an attractive target for therapeutic intervention. Mycobacterium tuberculosis GlmU (GlmUMt) has features, such as a C-terminal extension, that are not present in GlmUorthologs from other bacteria. Here, we set out to determine the uniqueness of GlmUMt by performing in vivo complementation experiments using RvΔglmU mutant. We find that any deletion of the carboxy-terminal extension region of GlmUMt abolishes its ability to complement the function of GlmUMt. Results show orthologs of GlmU, including its closest ortholog, from Mycobacterium smegmatis, cannot complement the function of GlmUMt. Furthermore, the co-expression of GlmUMt domain deletion mutants with either acetyl or uridyltransferase activities failed to rescue the function. However, co-expression of GlmUMt point mutants with either acetyl or uridyltransferase activities successfully restored the biological function of GlmUMt, likely due to the formation of heterotrimers. Based on the interactome experiments, we speculate that GlmUMt participates in unique interactions essential for its in vivo function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.