Abstract
Kinetic and thermodynamic parameters, derived from 1H-NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia, are reported for two mixed-sequence peptide nucleic acid (PNA)-DNA hybrids and their counterpart DNA duplex. The exchange times of the imino protons in the PNA strands extrapolate to very short base-pair lifetimes in the limit of infinite exchange catalyst concentration. This is not due to generally less stable base-pairs in PNA-DNA hybrids, since the lifetimes, apparent dissociation constants and thermodynamic stability (ΔG°) of the innermost DNA guanine imino protons are similar in the hybrid duplexes and in the DNA duplex. In addition, the apparent dissociation constants determined for PNA bases of the hybrids are of the same order as those of the corresponding bases in the DNA duplex. An exchange process from the closed state was found to be inconsistent with the experimental data. From these results, we conclude that opening and closing rates of the PNA guanine and thymine bases are at least two orders of magnitude higher than those of the corresponding bases in the DNA duplex. Unusual kinetics in the hybrids is also evident from the destabilization of the complementary DNA strand thymine bases, which exhibit base-pair dissociation constants increased by approximately two orders of magnitude compared to what is observed in the DNA duplex, while the DNA strand guanine bases are largely unaffected.The general pattern of the base-pair dynamics in the hybrids obtained when using trimethylamine as an exchange catalyst is the same as when using ammonia. However, the long base-pair lifetimes i.e. those of the DNA duplex and the guanine bases of the DNA strands in the hybrids, are approximately three to five times longer than when using ammonia. Thus, all opening events sensed by ammonia are not accessible to trimethylamine. These observations are discussed in regard to the mechanism of base-pair opening and the nature of the open state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.