Abstract

Accurate modeling of solar heating or cooling with storage generally requires an accounting of the stratification within such storage tank, since overall system performance is significantly affected by the storage temperature distribution. In this study, a simple one-dimensional multi-node approach, taking into account of the axial heat conduction between nodes, has been used to theoretically analyze temperature stratification in the thermal storage tank. The results indicate that, for less collector area, the heat removal factor plays a major role in increasing the system performance, than the thermal stratification. Also, an optimum ratio of tank volume over collector area exists for a solar powered absorption air conditioning system. This paper also reviews the state of the art on different kinds of variable inlet design, and a simple new inlet design (partitioning the tank) has been introduced to effect better thermal stratification in storage tank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.