Abstract

It is proved that the only additive and isotropic information measure that can depend on the probability distribution and also on its first derivative is a linear combination of the Boltzmann–Gibbs–Shannon and Fisher information measures. Power-law equilibrium distributions are found as a result of the interaction of the two terms. The case of second order derivative dependence is investigated and a corresponding additive information measure is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.