Abstract

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.

Highlights

  • Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development

  • The crystal structure of the SeMet derivative of Pc1,3Gal43A was first determined by means of the multiwavelength anomalous dispersion method, and this was followed by structure determination of the ligand-free WT, the WT bound with Gal (WT_Gal), the E208Q mutant co-crystallized with b-1,3-galactotriose (Gal3; E208Q_Gal3), and the E208A mutant co-crystallized with Gal3 (E208A_Gal3)

  • Pc1,3Gal43A is composed of two domains, and ligands introduced by soaking or co-crystallization are located in a subsite of the catalytic domain or the binding site of carbohydrate-binding module family 35 (CBM35) (Fig. 1)

Read more

Summary

Introduction

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. We discuss the catalytic mechanism and the mode of ligand binding to CBM35 in the two-domain structure. Pc1,3Gal43A is composed of two domains, and ligands introduced by soaking or co-crystallization are located in a subsite of the catalytic domain or the binding site of CBM35 (Fig. 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call