Abstract

Unusual ultrapotassic dikes were recently found on the Kvaloya Island in Northern Norway. The dikes crosscutting granites 1.8 Ga in age are 0.1–1.0 m thick and consist of phlogopite phenocrysts in a fine-grained groundmass of K-magnesioarfvedsonite, orthoclase, apatite, and secondary chlorite. According to the composition of the rock-forming minerals (4.5–6.0 wt % K2O and 0.7–3.5 wt % TiO2 in magnesioarfved-sonite, 1.6–3.6 wt % FeO in orthoclase, 9.2–10.7 wt % Al2O3 and 2.1–2.6 wt % TiO2 in phlogopite) and its bulk chemical composition (K/Na = 2.3–2.9, K/Al = 1.0–1.2, (Na + K)/Al = 1.4–1.7, Mg# V = 65–73, (La/Yb)n = 100–140, 3.2–4.0 wt % TiO2, 0.55–1.47 wt % BaO, 2.5–3.0 wt % P2O5, 2650–3000 ppm Zr, 900–1260 ppm REE total, 2300–2500 ppm Sr), the rock corresponds to lamproite of the transitional type. The unique chemical composition of the rock resulted in uncommon Ti-Ba-P accessory mineralization, including baotite Ba4(Ti,Nb)8Si4O28Cl (up to 5 vol %), Sr-apatite (5–7 vol %), and previously unknown Na-Mg-Ba phosphate. Baotite forms anhedral elongated and isometric grains 10–500 μm in size. It is characterized by low Nb (0.03–0.05 f.c.); admixtures of K (0.04–0.12 f.c.) and Sr (0.04–0.07) replacing Ba and Fe (0.01–0.03 f.c.); and Al (0.03–0.04 f.c.) substituting Ti. Euhedral elongated zonal apatite crystals are extremely enriched in SrO (8–12 wt %) and REE2O3 + Y2O3 (6–9 wt %) in the marginal zone. Na-Mg-Ba phosphate occurs as prismatic grains 10–100 μm in size. The atomic ratio of its major cations Na: Mg: Ba: P ∼ 2: 1: 1: 2 corresponds to the conventional formula Na2MgBa(PO4)2; the mineral contains Sr, Mn, Fe, Ca, Si, and Al admixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call