Abstract
Amorphous Pr0.7Ca0.3MnO3 (APCMO) films were grown on a Pt/Ti/SiO2/Si (Pt–Si) substrate at temperatures below 500 °C and the Pt/APCMO/Pt–Si device showed unipolar resistive switching behavior. Conduction behavior of the low resistance state (LRS) of the Pt/APCMO/Pt–Si device followed Ohm's law, and the resistance in LRS was independent of the size of the device, indicating that the conduction behavior in LRS can be explained by the presence of the conductive filaments. On the other hand, the resistance in the high resistance state (HRS) decreased with increasing the device size, and the conduction mechanism in the HRS was explained by Schottky emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.