Abstract

We present a method to generate an extremely short unipolar half-cycle pulse based on resonant propagation of a few-cycle pulse through asymmetrical media with periodic subwavelength structure. Moreover, single- and few-cycle gap solitons with different frequencies are found to split from one incident few-cycle ultrashort pulse. These solitons with various frequencies provide evidence for the generation of different parametric waves during the strong light-matter coupling in asymmetrical media under the extreme nonlinear optics condition. Because of the pulse self-shaping process during the course of resonant propagation, the generated low-frequency sideband and another broadband continuum sideband ranging from the visible to the near-infrared regime couple together, which results in the generation of the subfemtosecond unipolar half-cycle pulse. A time-frequency analysis is preformed which corroborates the mechanism. The generated unipolar half-cycle pulse might be utilized to control and probe the ultrafast electronic dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.