Abstract
In the problem of multivariate regression, a K-dimensional response vector is regressed upon a common set of p covariates, with a matrix B* isin Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ptimesK</sup> of regression coefficients. We study the behavior of the group Lasso using lscr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> /lscr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> regularization for the union support problem, meaning that the set of s rows for which B* is non-zero is recovered exactly. Studying this problem under high-dimensional scaling, we show that group Lasso recovers the exact row pattern with high probability over the random design and noise for scalings of (n, p, s) such that the sample complexity parameter given by thetas(n, p, s) := n/[2psi(B*) log(p - s)] exceeds a critical threshold. Here n is the sample size, p is the ambient dimension of the regression model, s is the number of non-zero rows, and psi(B*) is a sparsity-overlap function that measures a combination of the sparsities and overlaps of the K-regression coefficient vectors that constitute the model. This sparsity-overlap function reveals that, if the design is uncorrelated on the active rows, block lscr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> /lscr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> regularization for multivariate regression never harms performance relative to an ordinary Lasso approach, and can yield substantial improvements in sample complexity (up to a factor of K) when the regression vectors are suitably orthogonal. For more general designs, it is possible for the ordinary Lasso to outperform the group Lasso.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.