Abstract
In this paper we introduce and study a class of structured set-valued operators which we call union averaged nonexpansive. At each point in their domain, the value of such an operator can be expressed as a finite union of single-valued averaged nonexpansive operators. We investigate various structural properties of the class and show, in particular, that is closed under taking unions, convex combinations, and compositions, and that their fixed point iterations are locally convergent around strong fixed points. We then systematically apply our results to analyze proximal algorithms in situations where union averaged nonexpansive operators naturally arise. In particular, we consider the problem of minimizing the sum two functions where the first is convex and the second can be expressed as the minimum of finitely many convex functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.