Abstract
The quality of a radiotherapy plan often depends on the knowledge and expertise of the plan designers. To predict the uninvolved liver dose in stereotactic body radiotherapy (SBRT) for liver cancer using a neural network-based method. A total of 114 SBRT plans for liver cancer were used to test the neural network method. Sub-organs of the uninvolved liver were automatically generated. Correlations between the volume of each sub-organ, uninvolved liver dose, and neural network prediction model were established using MATLAB. Of the cases, 70% were selected as the training set, 15% as the validation set, and 15% as the test set. The regression R-value and mean square error (MSE) were used to evaluate the model. The volume of the uninvolved liver was related to the volume of the corresponding sub-organs. For all sets of R-values of the prediction model, except for Dn0 which was 0.7513, all R-values of Dn10-Dn100 and Dnmean were > 0.8. The MSE of the prediction model was also low. We developed a neural network-based method to predict the uninvolved liver dose in SBRT for liver cancer. It is simple and easy to use and warrants further promotion and application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.