Abstract

Employment of Uninformative Variable Elimination (UVE) as a robust variable selection method is reported in this study. Each regression coefficient represents the contribution of the corresponding variable in the established model, but in the presence of uninformative variables as well as collinearity reliability of the regression coefficient's magnitude is suspicious. Successive Projection Algorithm (SPA) and Gram–Schmidt Orthogonalization (GSO) were implemented as pre-selection technique for removing collinearity and redundancy among variables in the model. Uninformative variable elimination-partial least squares (UVE-PLS) was performed on the pre-selected data set and Cvalue's were calculated for each descriptor. In this case the Cvalue's of UVE assisted by SPA or GSO could be used in order to rank the variables according to their importance. Leave-many-out cross-validation (LMO-CV) was applied to ordered descriptors for selecting optimal number of descriptors. Selwood data including 31 molecules and 53 descriptors, and anti-HIV data including 107 molecules and 160 descriptors were utilized in this study. When GSO pre-selection method is used for the Selwood data and SPA for the anti-HIV data set, obtained results were desired not only in the prediction ability of the constructed model but also in the number of selected informative descriptors. By applying GSO-UVE-PLS to the Selwood data, in an optimized condition, seven descriptors out of 53 were selected with q2=0.769 and R2=0.915. Also applying SPA-UVE-PLS on the anti-HIV data, nine descriptors were selected out of 160 with q2=0.81, R2=0.84 and Q2F3=0.8.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.