Abstract

Obesity has been reported as an independent risk factor for chronic kidney disease, leading to glomerulosclerosis and renal insufficiency. To assess the relationship between a reduced nephron number and a particular susceptibility to obesity-induced renal damage, mice underwent uninephrectomy (UNX) followed by either normal chow or high-fat diet (HFD) and were compared with sham-operated control mice. After 20weeks of dietary intervention, HFD-fed control mice presented characteristic features of progressive nephropathy, including albuminuria, glomerulosclerosis, renal fibrosis and oxidative stress. These changes were more pronounced in HFD-fed mice that had undergone uninephrectomy. Analysis of gene expression in mouse kidney by whole genome microarrays indicated that high fat diet led to more changes in gene expression than uninephrectomy. HFD affected mainly genes involved in lipid metabolism and transport, whereas the combination of UNX and HFD additionally altered the expression of genes belonging to cytoskeleton remodeling, fibrosis and hypoxia pathways. Canonical pathway analyses identified the farnesoid X receptor (FXR) as a potential key mediator for the observed changes in gene expression associated with UNX-HFD. In conclusion, HFD-induced kidney damage is more pronounced following uninephrectomy and is associated with changes in gene expression that implicate FXR as a central regulatory pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.