Abstract

Polymers with two-dimensional (2D) network topologies are currently gaining significant attention due to their unique properties that originate from their regulated conformations. However, in contrast to conventional 1D- and 3D-networked macromolecules, the synthesis of such 2D networks provides challenges for polymer chemists because of the nature of the networking polymerisation reaction, which occurs in a spatially random fashion when conventional solution-phase synthesis is performed. Here we report a versatile synthesis of polymeric monosheets with unimolecularly thick networking architectures by exploiting the 2D nanospaces of metal–organic frameworks (MOFs) as reaction templates. Crosslinking radical polymerisation in the 2D nanospaces of pillared-layer-type MOFs affords monosheets of typical vinyl polymers and can be carried out on the gram scale. Remarkably, the prepared polymer monosheets are highly soluble in organic solvents and show atypical thermal and rheological properties that result from their 2D-regulated conformations that cannot be adopted by their 1D or 3D analogues.

Highlights

  • Polymers with two-dimensional (2D) network topologies are currently gaining significant attention due to their unique properties that originate from their regulated conformations

  • Molecular dynamics (MD) simulations of St placed in the interstices of 1 support the view that monomer hopping to adjacent 2D spaces cannot occur on a reasonable timescale at a reasonable temperature (Fig. 2c, d and Supplementary Fig. 1), which motivated us to carry out crosslinking reactions in 1 that would give unimolecularly thick monosheets of polymer networks

  • We synthesised ultrathin polymeric 2D sheets of vinyl polymers by exploiting the nanospaces in pillared-layer metal–organic frameworks (MOFs) as reaction platforms

Read more

Summary

Introduction

Polymers with two-dimensional (2D) network topologies are currently gaining significant attention due to their unique properties that originate from their regulated conformations. The successful syntheses of such macromolecules are limited to highly specific systems that exploit topochemical reactions of crystalline monomers[10,11,12], molecular tessellations and polymerisations at surfaces/interfaces[13,14,15,16,17,18], and the exfoliations of layered crystalline frameworks[19,20,21,22,23,24] Such top-down approaches are promising for producing 2D materials with better productivities and yields, these examples essentially require highly symmetrical multivalent monomers to define the dimensionalities of products in advance, which precludes versatility. The polymer sheets exhibit atypical rheological behaviour as evidenced by the complete absence of a rubbery plateau during dynamic mechanical analysis (DMA), which is plausibly due to suppressed entanglements and fast relaxation processes ascribable to the distinctive 2D network topology of its molecular shape

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.