Abstract

Little is known on antimicrobial peptide permeation through outer membrane channels in gram-negative bacteria. Herein, we probed at a single-molecule level the interaction of two different peptides, magainin 2 and HPA3P with OmpF from E. coli. HPA3P is an analogue of the antimicrobial peptide HP(2-20) isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Our data show that the shorter and more charged HPA3P peptide is more accessible to the inner volume of the OmpF than magainin 2. We demonstrate the ability of HPA3P peptides to interact with OmpF in a voltage- and concentration-dependent manner, which does not rule out a novel mechanism by which such peptides could reach the periplasmic space of gram-negative bacteria. Unexpectedly, we found that increasing the applied voltage led to an increase of the residence time of HPA3P peptide inside the pore, possibly reflecting electric field-induced changes in pore and peptide geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call