Abstract

Unimodular gravity can be formulated so that transverse diffeomorphisms and Weyl transformations are symmetries of the theory. For this formulation of unimodular gravity, we work out the two-point and three-point $h_{\mu\nu}$ contributions to the on-shell classical gravity action in the leading approximation and for an Euclidean AdS background. We conclude that these contributions do not agree with those obtained by using General Relativity due to IR divergent contact terms. The subtraction of these IR divergent terms yields the same IR finite result for both unimodular gravity and General Relativity. Equivalence between unimodular gravity and General Relativity with regard to the gauge/gravity duality thus emerges in a non trivial way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call