Abstract
Steady-states of the generalized Constantin–Lax–Majda equation with the viscosity and an external force are computed numerically by the spectral method. This equation is regarded as a model for two-dimensional turbulent motion of incompressible viscous fluid. We demonstrate numerically that the equation admits unimodal solutions—solutions with one and only one peak and bottom, if the Reynolds number is sufficiently large. We also report some interesting properties of the spectra of unimodal solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Japan Journal of Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.