Abstract
Nitrogen (N) status has a great impact on methane (CH4) consumption by soils. Modeling studies predicting soil CH4 consumption assume a linear relationship between CH4 uptake and N addition rate. Here, we present evidence that a nonlinear relationship may better characterize changes in soil CH4 uptake with increasing N additions. By conducting a field experiment with eight N-input levels in a Tibetan alpine steppe, we observed a unimodal relationship; CH4 uptake increased at low to medium N levels but declined at high N levels. Environmental and microbial properties jointly determined this response pattern. The generality of the unimodal trend was further validated by two independent analyses: (i) we examined soil CH4 uptake across at least five N-input levels in upland ecosystems across China. A unimodal CH4 uptake-N addition rate relationship was observed in 3 out of 4 cases; and (ii) we performed a meta-analysis to explore the N-induced changes in soil CH4 uptake with increasing N additions across global upland ecosystems. Results showed that the changes in CH4 uptake exhibited a quadratic correlation with N addition rate. Overall, we suggest that the unimodal relationship should be considered in biogeochemistry models for accurately predicting soil CH4 consumption under global N enrichment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.