Abstract

Abstract Thermoelectric materials can convert thermal energy into electrical energy without any moving part which leads its path of application to the era of printed and flexible electronics. CsSnI3 perovskite can be a promising thermoelectric material for the next-generation energy conversion due to its intrinsic ultra-low thermal conductivity and large Seebeck coefficient but enhancement of electrical conductivity is still required. CsSnI3 can be prepared by wet process which can reduce the cost of flexible thermoelectric module. In this work, CsSnI3 thin films were fabricated by spin coating wet process. Thin films were structurally and chemically characterized using XRD and SEM. Thermoelectric properties such as electrical conductivity, Seebeck coefficient, and thermal conductivity were measured at 300 K. Uni-leg thermoelectric modules were fabricated on a glass substrate using CsSnI3 thin films. The maximum output is about 0.8 nW for 5 legs (25 mm × 3 mm × 600 nm) modules for the temperature difference of about 5°C. These results will open a new pathway to thermoelectric modules for flexible electronics in spite of low output power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.