Abstract

This study's goal is to identify adaptations involving striatal glutamate (GLU) or dopamine (DA) receptors that may contribute to recovery of function following cortical injury. Unilateral aspiration of the medial agranular region of frontal cortex (AGm) in rats produces neglect of contralateral stimuli. Pharmacological and immunocytochemical studies suggest that glutamatergic and dopaminergic processes within striatum may contribute to spontaneous recovery from this neglect. This study examined by autoradiography radioligand binding to striatal GLU and DA receptor subfamilies in AGm-ablated rats surviving 5 days (unrecovered) or 3 or more weeks (recovered) postsurgery. Density of radioligand binding was quantified in striatal subregions by computerized image analysis. Compared to striatal binding densities in the intact hemisphere, [3H]kainate binding and [3H]GLU binding to NMDA receptors were decreased in the lesioned hemisphere of unrecovered AGm-ablated rats, but normalized (for kainate) or increased (for NMDA) in the lesioned hemisphere of recovered rats. Ablation of AGm did not affect [3H]AMPA binding or the binding of [3H]SCH23390, [3H]spiperone, or [3H]mazindol to dopaminergic D1 or D2 receptor subfamilies, or to DA uptake sites, respectively. The results suggest that a small percentage of NMDA and kainate receptors are located on corticostriatal axon terminals, and that over time an upregulation of striatal NMDA and/or kainate receptors may offset the loss of cortical glutamatergic input caused by cortical injury. These time-dependent alterations in GLU receptors may contribute to the recovery of function and normalizations of immediate early gene expression seen weeks after AGm ablation. Upregulation of striatal dopamine receptors was not evident, and thus is unlikely to mediate recovery from neglect produced by cortical injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.