Abstract
The pedunculopontine tegmental nucleus (PPTg) is a component of the locomotor mesencephalic area. In recent years it has been considered a new surgical site for deep brain stimulation (DBS) in movement disorders. Here, using objective kinematic and spatio-temporal gait analysis, we report the impact of low frequency (40Hz) unilateral PPTg DBS in ten patients suffering from idiopathic Parkinson’s disease with drug-resistant gait and axial disabilities. Patients were studied for gait initiation (GI) and steady-state level walking (LW) under residual drug therapy. In the LW study, a straight walking task was employed. Patients were compared with healthy age-matched controls. The analysis revealed that GI, cadence, stride length and left pelvic tilt range of motion (ROM) improved under stimulation. The duration of the S1 and S2 sub-phases of the anticipatory postural adjustment phase of GI was not affected by stimulation, however a significant improvement was observed in the S1 sub-phase in both the backward shift of centre of pressure and peak velocity. Speed during the swing phase, step width, stance duration, right pelvic tilt ROM phase, right and left hip flexion-extension ROM, and right and left knee ROM were not modified.Overall, the results show that unilateral PPTg DBS may affect GI and specific spatio-temporal and kinematic parameters during unconstrained walking on a straight trajectory, thus providing further support to the importance of the PPTg in the modulation of gait in neurodegenerative disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.