Abstract

It has been recently suggested that the effects of cannabinoids on motor behavior might be different in rats with lesions of nigrostriatal dopaminergic neurons than in controls. In the present study, we examined the possible alteration in the status of cannabinoid CB1 receptors in the basal ganglia of rats with unilateral lesions of those neurons caused by 6-hydroxydopamine. We used two different experimental groups depending on the duration of the period of recovery after the lesion, and comparisons were done between the lesioned and nonlesioned sides at the level of the basal ganglia. Both groups of lesioned rats exhibited a similar marked reduction in tyrosine hydroxylase (TH)-mRNA levels, measured by in situ hybridization, in the substantia nigra of the lesioned side. In the same way, lesioned rats exhibited the characteristic rotational behavior after a single injection of apomorphine and the intensity of this rotation was stable at the two times analyzed after the lesion. Also as expected, lesioned rats exhibited an increase in proenkephalin mRNA levels in the caudate-putamen, whereas mRNA levels of substance P decreased, although differences between the two times of recovery analyzed were observed in this case. We did not find any significant changes in CB1 receptor binding, measured by [3H]WIN-55,212,2 autoradiography, or in the activation of signal transduction mechanisms, measured by WIN-55,212,2-stimulated [35S]GTPgammaS binding autoradiography, between the lesioned and nonlesioned sides at the level of the lateral caudate-putamen, globus pallidus and substantia nigra in both groups of lesioned rats. However, we found a significant increase in levels of CB1 receptor-mRNA transcripts, measured by in situ hybridization, in the lesioned side in both the lateral and medial caudate-putamen. This occurred 7-10 weeks after the lesion, but the increase was markedly waned after 17-18 weeks. In summary, the unilateral 6-hydroxydopamine lesion of nigrostriatal dopaminergic neurons originated a marked increase in CB1 receptor-mRNA levels in cell bodies of striatal efferent neurons, although accompanied by no changes in CB1 receptor binding and activation of signal transduction mechanisms. This supports a critical role for dopamine in the control of CB1 receptor gene expression. However, the magnitude of the effect significantly waned as a function of the duration of the period after lesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call