Abstract

The electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) in alkaline electrolyte is a promising strategy for producing high-value chemicals from biomass derivatives. However, the disproportionation of aldehyde groups under strong alkaline conditions and the polymerization of HMF to form humic substances can impact the purity of 2,5-furandicarboxylic acid (FDCA) products. The use of neutral electrolytes offers an alternative environment for electrolysis, but the lack of OH− ions in the electrolyte often leads to low current density and low yields of FDCA. In this study, a sandwich-structured catalyst, consisting of Ru clusters confined between unilamellar MnO2 nanosheets (S-Ru/MnO2), was used in conjunction with an electrochemical pulse method to realize the electrochemical conversion of 5-hydroxymethylfurfural into FDCA in neutral electrolytes. Pulse electrolysis and the strong electron transfer between Ru clusters and MnO2 nanosheets help maintain Ru in a low oxidation state, ensuring high activity. The increased *OH generation led to a groundbreaking current density of 47 mA/cm2 at 1.55 V vs. reversible hydrogen electrode (RHE) and an outstanding yield rate of 98.7 % for FDCA in a neutral electrolyte. This work provides a strategy that combines electrocatalyst design with an electrolysis technique to achieve remarkable performance in neutral HMFOR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.