Abstract
Contrastive learning is a form of distance learning that aims to learn invariant features from two related representations. In this work, we explore the hypothesis that an image and caption can be regarded as two different views of the underlying mutual information, and train a model to learn a unified vision-language representation space that encodes both modalities at once in a modality-agnostic manner. We first identify difficulties in learning a one-tower model for vision-language pretraining (VLP), and propose One Representation (OneR) as a simple yet effective framework for our goal. We discover intriguing properties that distinguish OneR from the previous works that have modality-specific representation spaces such as zero-shot localization, text-guided visual reasoning and multi-modal retrieval, and present analyses to provide insights into this new form of multi-modal representation learning. Thorough evaluations demonstrate the potential of a unified modality-agnostic VLP framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.