Abstract

The entropy power inequality (EPI) and the Brascamp-Lieb inequality (BLI) are fundamental inequalities concerning the differential entropies of linear transformations of random vectors. The EPI provides lower bounds for the differential entropy of linear transformations of random vectors with independent components. The BLI, on the other hand, provides upper bounds on the differential entropy of a random vector in terms of the differential entropies of some of its linear transformations. In this paper, we define a family of entropy functionals, which we show are subadditive. We then establish that Gaussians are extremal for these functionals by adapting a proof technique from Geng and Nair (2014). As a consequence, we obtain a new entropy inequality that generalizes both the BLI and EPI. By considering a variety of independence relations among the components of the random vectors appearing in these functionals, we also obtain families of inequalities that lie between the EPI and the BLI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.