Abstract

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism, which has been demonstrated effective, is the most fundamental part of GNNs. Although most of the GNNs basically follow a message passing manner, little effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with an optimization problem. We show that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solutions of a generalized optimization framework with a flexible feature fitting function and a generalized graph regularization term. Actually, the optimization framework can not only help understand the propagation mechanisms of GNNs, but also open up opportunities for flexibly designing new GNNs. Through analyzing the general solutions of the optimization framework, we provide a more convenient way for deriving corresponding propagation results of GNNs. We further discover that existing works usually utilize naïve graph convolutional kernels for feature fitting function, or just utilize one-hop structural information (original topology graph) for graph regularization term. Correspondingly, we develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities and one novel objective function considering high-order structural information during propagation respectively. Extensive experiments on benchmark datasets clearly show that the newly proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with the generalized unified optimization framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call