Abstract
Partial, total and general correctness and further models of sequential computations differ in their treatment of finite, infinite and aborting executions. Algebras structure this diversity of models to avoid the repeated development of similar theories and to clarify their range of application. We introduce algebras that uniformly describe correctness statements, correctness calculi, pre-post specifications and loop refinement rules in five kinds of computation models. This extends previous work that unifies iteration, recursion and program transformations for some of these models. Our new description includes a relativised domain operation, which ignores parts of a computation, and represents bound functions for claims of termination by sequences of tests. We verify all results in Isabelle heavily using its automated theorem provers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.