Abstract

The Matérn family of covariance functions has played a central role in spatial statistics for decades, being a flexible parametric class with one parameter determining the smoothness of the paths of the underlying spatial field. This paper proposes a family of spatial covariance functions, which stems from a reparameterization of the generalized Wendland family. As for the Matérn case, the proposed family allows for a continuous parameterization of the smoothness of the underlying Gaussian random field, being additionally compactly supported.More importantly, we show that the proposed covariance family generalizes the Matérn model which is attained as a special limit case. This implies that the (reparametrized) Generalized Wendland model is more flexible than the Matérn model with an extra-parameter that allows for switching from compactly to globally supported covariance functions.Our numerical experiments elucidate the speed of convergence of the proposed model to the Matérn model. We also inspect the asymptotic distribution of the maximum likelihood method when estimating the parameters of the proposed covariance models under both increasing and fixed domain asymptotics. The effectiveness of our proposal is illustrated by analyzing a georeferenced dataset of mean temperatures over a region of French, and performing a re-analysis of a large spatial point referenced dataset of yearly total precipitation anomalies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.