Abstract

We show that several models where electric polarization in molecular systems is modeled by charge-flow between atoms can all be considered as different manifestations of a general underlying mathematical structure. The models can be classified according to whether they employ atomic or bond parameters and whether they employ atom/bond hardness or softness. We show that an ab initio calculated charge response kernel can be considered as the inverse screened Coulombic matrix projected onto the zero-charge subspace, and this may provide a method for deriving charge screening functions to be used in force fields. The analysis suggests that some models contain redundancies, and we argue that a parameterization of charge-flow models in terms of bond softness is preferable as it depends on local quantities and decay to zero upon bond dissociation, while bond hardness depends on global quantities and increases toward infinity upon bond dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.