Abstract
AbstractOpenMP is a widely used standard for parallel programing on a broad range of SMP systems. In the OpenMP programming model, synchronization points are specified by implicit or explicit barrier operations. However, certain classes of computations such as stencil algorithms need to specify synchronization only among particular tasks/threads so as to support pipeline parallelism with better synchronization efficiency and data locality than wavefront parallelism using all-to-all barriers. In this paper, we propose two new synchronization constructs in the OpenMP programming model, thread-level phasers and iteration level phasers to support various synchronization patterns such as point-to-point synchronizations and sub-group barriers with neighbor threads. Experimental results on three platforms using numerical applications show performance improvements of phasers over OpenMP barriers of up to 1.74× on an 8-core Intel Nehalem system, up to 1.59× on a 16-core Core-2-Quad system and up to 1.44× on a 32-core IBM Power7 system. It is reasonable to expect larger increases on future manycore processors.KeywordsParallel RegionParallel LoopBarrier SynchronizationSynchronization PatternRegistration ModeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.