Abstract

We consider the quasi-static Biot’s consolidation model in a three-field formulation with the three unknown physical quantities of interest being the displacement u of the solid matrix, the seepage velocity v of the fluid and the pore pressure p. As conservation of fluid mass is a leading physical principle in poromechanics, we preserve this property using an H(div)-conforming ansatz for u and v together with an appropriate pressure space. This results in Stokes and Darcy stability and exact, that is, pointwise mass conservation of the discrete model.The proposed discretization technique combines a hybridized discontinuous Galerkin method for the elasticity subproblem with a mixed method for the flow subproblem, also handled by hybridization. The latter allows for a static condensation step to eliminate the seepage velocity from the system while preserving mass conservation. The system to be solved finally only contains degrees of freedom related to u and p resulting from the hybridization process and thus provides, especially for higher-order approximations, a very cost-efficient family of physics-oriented space discretizations for poroelasticity problems.We present the construction of the discrete model, theoretical results related to its uniform well-posedness along with optimal error estimates and parameter-robust preconditioners as a key tool for developing uniformly convergent iterative solvers. Finally, the cost-efficiency of the proposed approach is illustrated in a series of numerical tests for three-dimensional test cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call