Abstract

A unified method to compute compressible and incompressible flows is presented. Accuracy and efficiency do not degrade as the Mach number tends to zero. A staggered scheme solved with a pressure correction method is used. The equation of state is arbitrary. A Riemann problem for the barotropic Euler equations with nonconvex equation of state is solved exactly and numericaly. A hydrodynamic flow with cavitation in which the Mach number varies between 10−3 and 20 is computed. Unified methods for compressible and incompressible flows are further discussed for the flow of a perfect gas. The staggered scheme with pressure correction is found to have Mach-uniform accuracy and efficiency, and for the fully compressible case the accuracy is comparable with that of established schemes for compressible flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.