Abstract

AbstractIn this paper, we construct a kind of novel finite difference (NFD) method for solving singularly perturbed reaction–diffusion problems. Different from directly truncating the high‐order derivative terms of the Taylor's series in the traditional finite difference method, we rearrange the Taylor's expansion in a more elaborate way based on the original equation to develop the NFD scheme for 1D problems. It is proved that this approach not only can highly improve the calculation accuracy but also is uniformly convergent. Then, applying alternating direction implicit technique, the newly deduced schemes are extended to 2D equations, and the uniform error estimation based on Shishkin mesh is derived, too. Finally, numerical experiments are presented to verify the high computational accuracy and theoretical prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.