Abstract

We construct a class of multigrid methods for convection–diffusion problems. The proposed algorithms use first order stable monotone schemes to precondition the second order standard Galerkin finite element discretization. To speed up the solution process of the lower order schemes, cross-wind-block reordering of the unknowns is applied. A V-cycle iteration, based on these algorithms, is then used as a preconditioner in GMRES. The numerical examples show that this method is convergent without imposing any constraint on the coarsest grid and the convergence of the preconditioned method is uniform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.