Abstract

This work proposes a uniformly convergent numerical scheme to solve singularly perturbed parabolic problems of large time delay with two small parameters. The approach uses implicit Euler and the exponentially fitted extended cubic B-spline for time and space derivatives respectively. Extended cubic B-splines have advantages over classical B-splines. This is because for a given value of the free parameter lambda the solution obtained by the extended B-spline is better than the solution obtained by the classical B-spline. To confirm the correspondence of the numerical methods with the theoretical results, numerical examples are presented. The present numerical technique converges uniformly, leading to the current study of being more efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.