Abstract

ABSTRACTIn this paper, we consider the tail behavior of discounted aggregate claims in a dependent risk model with constant interest force, in which the claim sizes are of upper tail asymptotic independence structure, and the claim size and its corresponding inter-claim time satisfy a certain dependence structure described by a conditional tail probability of the claim size given the inter-claim time before the claim occurs. For the case that the claim size distribution belongs to the intersection of long-tailed distribution class and dominant variation class, we obtain an asymptotic formula, which holds uniformly for all times in a finite interval. Moreover, we prove that if the claim size distribution belongs to the consistent variation class, the formula holds uniformly for all times in an infinite interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.