Abstract

In [F. Li, C.-W. Shu, Y.-T. Zhang, H. Zhao, J. Comput. Phys., 227 (2008) pp. 8191–8208], we developed a fast sweeping method based on a hybrid local solver which is a combination of a discontinuous Galerkin (DG) finite element solver and a first order finite difference solver for Eikonal equations. The method has second order accuracy in the $L^1$ norm and a very fast convergence speed, but only first order accuracy in the $L^\infty$ norm for the general cases. This is an obstacle to the design of higher order DG fast sweeping methods. In this paper, we overcome this problem by developing uniformly accurate DG fast sweeping methods for solving Eikonal equations. We design novel causality indicators which guide the information flow directions for the DG local solver. The values of these indicators are initially provided by the first order finite difference fast sweeping method, and they are updated during iterations along with the solution. We observe both a uniform second order accuracy in the $L^\infty$ norm (in smooth regions) and the fast convergence speed (linear computational complexity) in the numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.