Abstract
Many transport equations, such as the neutron transport, radiative transfer, and transport equations for waves in random media, have a diffusive scaling that leads to the diffusion equations. In many physical applications, the scaling parameter (mean free path) may differ in several orders of magnitude from the rarefied regimes to the hydrodynamic (diffusive) regimes within one problem, and it is desirable to develop a class of robust numerical schemes that can work uniformly with respect to this relaxation parameter. In an earlier work [Jin, Pareschi, and Toscani, SIAM J. Numer. Anal., 35 (1998), pp. 2405--2439] we handled this numerical problem for discrete-velocity kinetic models by reformulating the system into a form commonly used for a relaxation scheme for conservation laws [Jin and Xin, Comm. Pure Appl. Math., 48 (1995), pp. 235--277]. Such a reformulation allows us to use the splitting technique for relaxation schemes to design a class of implicit, yet explicitly implementable, schemes that work with high resolution uniformly with respect to the relaxation parameter. In this paper we show that such a numerical technique can be applied to a large class of transport equations with continuous velocities, when one uses the even and odd parities of the transport equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.